Министерство науки и высшего образования Российской Федерации
Федеральное государственное бюджетное научное учреждение
«Экспертно-аналитический центр»
Москва, ул. Талалихина, д. 33, стр. 4. Телефон: (495) 663-20-13

Дата публикации: 02 октября 2019 г.

Ученые предложили универсальный способ сжатия и «остановки» света для сверхбыстрой оптической передачи данных

Международная группа ученых, в которую входит сотрудник Университета ИТМО, опубликовала в журнале «Nature Photonics» научную статью, посвященную контролируемому изменению скорости и спектра светового сигнала. В своей работе исследователи обобщили опыт прошлых экспериментов и теоретических изысканий, что поможет в создании новых устройств для скоростной передачи данных.


Проблема в том, как переключить световой сигнал на другой частотный канал или остановить его на время без перевода в электронный формат, уже давно занимает ученых. Решение данной проблемы, позволит создать полностью оптические роутеры для увеличения скорости передачи данных.

Для того, чтобы создавать более быстрые линии передачи информации, ученым необходимо создавать более сложные оптические схемы, в которых было бы возможно контролируемое изменение частоты оптического сигнала, его сжатие, замедление. 

За последние десятилетия ученые предложили несколько теорий и провели множество экспериментов по управлению светом с помощью динамического изменения индекса преломления. Группа исследователей, в которую входит сотрудник Университета ИТМО Александр Петров и его коллеги из Технического университета Гамбурга, Университета Минуфии, Центра Гельмгольца в Гистахте и Университета Йокогамы опубликовала совместную статью по этой тематике. В ней они обобщили опыт предыдущих поколений исследователей, а также показали, как небольшое изменение показателя преломления, движущееся по оптическому волноводу, можно использовать для эффективного управления светом.

Некоторое время назад ученым удалось показать, что световой импульс, попавший в резонатор с меняющимся индексом преломления, может поменять свою частоту, то есть, по сути, изменить свой цвет. Этот эффект получил название «прямого перехода». Чтобы нагляднее объяснить происходящее, Петров сравнивает свет со звуком.

«Можно ли изменить частоту уже возбужденных колебаний так, чтобы энергия колебаний плавно перешла с одной частоты на другую? На этот вопрос может легко ответить тот, кто когда-то настраивал гитару. Если ударить по струне, и пока звук не угас, менять натяжение струны, то частота колебаний изменится. Это так называемое динамическое изменение частоты. При этом длина волны колебания, определенная длиной струны, остается постоянной. Можно показать, что такой же эффект произойдет и в случае волны, бегущей по струне. Если менять натяжение струны во время движения, то волна, запущенная из точки А на одной частоте, придет в точку Б на другой частоте. Удивительно, что длина волны в этом случае опять окажется неизменной. Подобные эффекты наблюдаются и в оптике», – рассказывает ученый.

Оптический сигнал может менять не только частоту, но и длину волны. Это происходит всякий раз, когда свет проходит через границу двух сред: воздуха и воды, воды и стекла. Если граница между двумя средами двигается, то при прохождении света может изменяться как длина волны, так и ее частота. В этом случае свет совершает так называемый непрямой переход.

Используя этот эффект, можно даже при определенных условиях остановить световой сигнал и сохранить его на некоторое время, чтобы потом передать с задержкой. Можно также и сжать световой сигнал для увеличения скорости передачи данных.

«Прохождение света через границу между двумя средами (через фронт) при некоторых условиях может быть использовано для полной остановки света. То есть, пройдя через фронт, свет попадает в состояние с нулевой групповой скоростью. Еще есть эффект, который получил название “оптической метлы” (optical push broom), так как фронт собирает свет на своем пути и сжимает его. Свет в данном случае подобен серферу на волне. Серфер направляет свою скорость так, чтобы не потерять волну, и непрерывно скатываясь со склона, использует полученную энергию для компенсации силы трения о воду. В случае света, правильно выбранное дисперсионное соотношение волновода тоже позволяет свету как бы поймать волну и, находясь на склоне фронта, получать энергию. Так как трение света отсутствует, дополнительная энергия используется для увеличения частоты», – рассказывает Александр Петров.

Применений у данных эффектов, утверждают ученые, множество. В первую очередь увеличение скорости передачи данных. Это станет возможным благодаря созданию полностью оптического роутера, который действовал бы на этом принципе.

«Сейчас роутер считывает оптический сигнал, переводит его в электронный, позже он вновь конвертирует его в оптический. Это занимает время и требует дополнительной энергии. В оптическом роутере не будет перехода на электронные сигналы. Можно сразу оптический сигнал переключить на другой канал. Для этого можно взять пакет информации, пропустить через такой фронт внутри волновода и перескочить на другую частоту. Это не только повысит скорость, но и снизит затраты энергии, что важно для дата-центров, суперкомпьютеров», – поясняет исследователь.

Эффект оптической метлы поможет создавать импульсные лазеры на основе постоянного лазера, и использовать его в различных устройствах. Можно будет генерировать оптические импульсы с любой длиной волны не теряя энергии. Также можно будет генерировать оптические импульсы произвольной формы. Сейчас есть такие генераторы для микроволн, но не для света.

Источник: news.ifmo.ru

← предыдущая новость следующая новость →
Популярные издания ФГБНУ «Аналитический центр»
Издания 2019 года

Гасанбекова Л. А. Оценка эффективности финансово-хозяйственной деятельности государственных унитарных предприятий

Практическое пособие / Л. А. Гасанбекова, В. И. Никитина, Б. В. Сошников; под общ. науч. ред. канд. экон. наук О. А. Коробко. – М.: ФГБНУ «Аналитический центр» Минобрнауки России, 2019. – 49 с. (ISBN 978-5-904670-54-2).

Доступна электронная версия печатного издания.

Издания 2015 года

Капран Н. П. Организация мониторинга финансово-хозяйственной деятельности учреждений, подведомственных Минобрнауки России

Монография / Н. П. Капран, С. Н. Новиков, В. А. Привезенцев; под науч. ред. А. И. Володина. – М.: ФГБНУ «Аналитический центр» Минобрнауки России, 2015. – 92 с. (ISBN 978-5-904670-31-3).

Доступна электронная версия печатного издания.

открыть полный список изданий Центра →

Документ был изменён 11.11.2019 в 10:50.

Онлайн-курс
Организация системы внутреннего контроля в организациях, подведомственных Минобрнауки России
подробнее о программе
Поиск данных
об аттестации
педагогических работников
Издания Центра